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QENS in the Energy Domain:QENS in the Energy Domain:
Backscattering and TimeBackscattering and Time--ofof--FlightFlight

Alexei Sokolov
Department of Polymer Science, The University of Akron 

Outline

• Soft Matter and Neutron Spectroscopy
• Using elastic scattering and employing H/D 

contrast
• Quasielastic scattering spectra, susceptibility 

presentation
• Q-dependence: diffusive vs local processes 

Geometry of the motion from EISF
• Use of coherent scattering
• Spectrometers

Santa Fe, May 2008Soft Matter

Characteristics of Soft Materials:
-Variety of states and large degree of freedom, metastable states;
-Delicate balance between Entropic and Enthalpic contributions to the Free Energy;
-Large thermal fluctuations and high sensitivity to external conditions;
-Macroscopic softness.

Polymers Colloids Liquid Crystals

Foams and Gels
Biological Systems
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Neutron Scattering, S(Q,ν)
Spin-Echo

Back-sc. Time-of-Flight

Light Scattering, Iij(Q,ν)

Photon – Correlation Spectroscopy

Interferometry

Raman spectroscopy

Inelastic X-ray Scattering, S(Q,ν) High-Resolution
IXS

Dielectric Spectroscopy, ε*(ν)

Traditional dielectric spectroscopy

Quasi-optics,TDS

IR-spectr.

Scattering techniques have an advantage due to additional variable – wave-vector Q

Frequency map of polymer dynamics

FREQUENCY, ν
10-2 1 102 104 106 108 1010 1012 1014 Hz

Fast relaxation

Structural relaxation, α-process
VibrationsSecondary relaxations

Chain dynamics: Rouse and terminal relaxation

Mechanical relaxation G∗(ν)
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Beauty of Neutron Spectroscopy

�Measures characteristic times (frequency) and geometry of the motions.
�Covers broad frequency and Q-range in the most important for microscopic 
dynamics region. Current X-ray technology cannot compete!
�Most of the soft materials contain hydrogen atoms, use of D/H contrast.
�Direct comparison to results of MD-simulations.
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An example of elastic scan 
measurements of PI [Frick, Fetters, Macromol. 27, 

1994]. Decrease of elastic intensity marks 
onset of a relaxation process. Various 
deuteration of the polymer allows 
separate methyl group and main-chain 
motion.

The onset of methyl groups rotation at 
temperatures below Tg is clearly seen.

PI-h8 – all H, 
PI-d8 with all D.

PI – d3

PI – d5

PI-d3

PI-d5

Using H/D Contrast
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Methyl Group Dynamics in Proteins

Significant part of H-atoms in proteins are on 
methyl groups. 
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Decrease of the elastic intensity in dry lysozyme can be described assuming a Gaussian 
distribution of energy barriers, g(Ei)∝exp[-(Ei-E0)2/2∆E2], with E0~16.6 kJ/mol and ∆E~5.8 
kJ/mol in good agreement with earlier NMR data [J.H.Roh, et al. Biophys.J. 91, 2573 (2006)].

Here τi=τ0exp(Ei/kT)
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Santa Fe, May 2008Mean-squared Displacements <r2>
In rough approximation, for an isotropic motion:

This approximation works well only at low Q. 
The estimated <r2> depends on the selected Q-range and the resolution 
function of the spectrometer.
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Analysis of <r2> helps to identify interesting temperature ranges. However, <r2> is 
an integrated quantity (includes vibrations, rotation, diffusion, etc.) and analysis of 
spectra is required for understanding the dynamics.

Santa Fe, May 2008Quasielastic Scattering Spectrum

Usual approximation is a Lorentzian
function: 
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In most cases 2 or more Lorentzians
are used for the fit of the spectra. 
This approximation assumes single 
exponential relaxation:

However, many relaxation processes 
in soft matter are strongly stretched

( )[ ]βτ/exp),( ttQS −∝

So, approximation by Lorentzians can give misleading quantitative results
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Vibrations
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(quasielastic scattering)
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Susceptibility presentation of scattering spectra has a few advantages:
- can be directly compared to ε”(ν), G”(ν);
- each relaxation process appears as a maximum at 2πντ~1;
- slopes of the tails give estimate of stretching exponents.

The spectra of proteins show two relaxation processes.  Both processes are strongly 
stretched (can not be described by a single exponential relaxation).
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Susceptibility presentation

Susceptibility spectra 
of wet lysozyme
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For regular diffusion:
In that case:
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An exponential decay for S(Q,t), with decay rate Γ∝Q2
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Q-dependence: Diffusion

In frequency domain:

In the case of sub-diffusive regime:
with Γ∝Q2/β.

( ) ( )[ ] ( )[ ]βββ tDtQtQSDttr Γ−∝−∝=>∝ expexp),()( 22

Diffusion-like motions exhibit strong dependence of the decay rate Γ (or relaxation 
time τ ∝ 1/Γ) on Q.
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Let’s assume that there are two equal positions and molecule makes 
jumps between r1 and r2 positions. In isotropic case:
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EISF(Q) is the Elastic Incoherent Structure Factor. It 
contains information on geometry of the motion.
In the frequency domain:
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Q-dependence: a Local Relaxation Process

For a local relaxation process:
�S(Q,ω) has two component – elastic 
and quasielastic; 
�Characteristic time scale τ (or Γ) is 
independent of Q (at least, at large Q).

Santa Fe, May 2008
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Analysis of elastic incoherent structure 
factor, EISF(Q)=Iel(Q)/[Iel(Q)+IQES(Q)],  
can be done:
(i) assuming a single exponential 
relaxation (single Lorentzian);
(ii) taking into account a distribution of 
τi or energy barriers g(Ei):
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Analysis of the first data set (single Lorentzian) gives mobile fraction of H-atoms 
pm=0.14 and radius R~1.3 A, while analysis of the second set gives pm=0.25 and 
radius R~1.3 A. For methyl groups R~1.1 A and pm=0.26 in lysozyme [J.H.Roh, et al. 

Biophys.J. 91, 2573 (2006)].

EISF in dry protein: Methyl Group Dynamics
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The first approximation overestimates EISF.
Fit of the EISF to a 3-site jump model [J.H.Roh, et al. Biophys.J. 91, 2573 (2006)]:
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Santa Fe, May 2008Segmental and Secondary Relaxations in Polymers

Segmental relaxation time τS exhibits 
strong Q-dependence, τS∝Q-2/β, 
indicating “stretched” diffusive-like 
process (β - KWW stretching parameter).

Homogeneous vs Heterogeneous Dynamics

a) Heterogeneous: Normal diffusion with 
distribution of diffusion coefficient D:
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b) Homogeneous: Sublinear diffusion in 
time, <r2(t)>∝tβ:
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Colmenero, et al., J.Phys.Con.Matter 11, A363 (1999).

Santa Fe, May 2008

Q dependence of τself change sharply 
when T approaches ~200 K. Also scaling 
with the viscosity time scale τη fails.

Polybutadiene (PB): Split of Segmental and Secondary Relaxations

S. Kahle, et al. Appl.Phys. A 74, S371 (2002)

This behavior is ascribed to the split 
of segmental and secondary (local) 
relaxations.

Dielectric data

segmental

secondary
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Santa Fe, May 2008Coherent Scattering

NSE data measured at different T for deuterated PB 
scaled with the viscosity time scale τη:
-Master curve for the data measured at Q~1.5A-1;
-No master curve for the data at Q~2.7A-1.

Q=1.5A-1

Q=2.7A-1

Conclusions:
�Segmental relaxation involves inter-molecular 
motions;
�Secondary relaxation involves intra-molecular 
motion, rotation about the double-bond.

inter-molecular

intra-
molecular

A. Arbe, et al. PRE 54, 3853 (1996).

Polybutadiene

Santa Fe, May 2008

3 x 105 n cm-2 s-1Neutron Flux at 
Sample

165°Analyzer Span

About 1 µeV
Energy resolution at 
± 36 µeV

2.08meVNeutron Energy

± 36 µeVEnergy range

0.25 Å-1 – 1.75 Å-1Q range

6.271 ÅWavelength

Instruments: Back-Scattering Spectrometer HFBS
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Instruments: Back-Scattering Spectrometer HFBS

Santa Fe, May 2008Instruments: TOF Spectrometer DCS

�The DCS is a direct geometry time-of-flight spectrometer, the only 
instrument of its kind in North America.
�The DCS is primarily used for studies of low energy excitations and 
diffusive motions in a wide variety of materials.
�The DCS is an extremely versatile instrument. Useful incident wavelengths 
range from < 2Å to at least 9Å; correspondingly the elastic energy resolution 
(FWHM) varies from ~1500 to ~15 �eV.
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Santa Fe, May 2008Instruments: TOF Spectrometer DCS

For any experiment try to 
optimize intensity vs resolution.

Santa Fe, May 2008Conclusions

�Neutron Spectroscopy is well positioned for analysis of dynamics of Soft 
Materials. 

�Analysis of elastic scattering and use of H/D contrast allows to identify 
molecular units involved in the motion, geometry of the motion and interesting 
temperature ranges. 

�Analysis of the Q-dependence differentiate diffusive and local processes and 
provide additional information on geometry of molecular motions.

�Analysis of the energy-resolved spectra provides information on 
characteristic relaxation times and vibrational frequencies, their distribution and 
temperature dependence.

�Coherent scattering provides additional information on cooperativity and 
geometry of molecular motion. However, analysis of the coherent scattering is 
more complex than analysis of incoherent scattering. 
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�Mean-squared displacement <r2> in dry protein (HFBS data from J.H.Roh, et al.

Biophys.J. 91, 2573 (2006)):
-Analyze temperature dependence of <r2> using HFBS data from elastic scan 
(Doppler stopped).

�QENS spectrum of dry protein (HFBS data from J.H.Roh, et al. Biophys.J. 91, 2573 (2006)):
-Analyze Q-dependence of the characteristic relaxation time (decay rate);
-Analyze EISF(Q) (assuming Lorentzian spectrum).

�QENS spectrum of water of polypeptide hydration (DCS data from D. Russo, et al. 

J.Phys.Chem. B 109, 12966 (2005)):
- Analyze Q-dependence of characteristic relaxation time (decay rate)

Using DAVE program and provided experimental data (3 sets of data) 
perform the following tasks:


