1st Lecture Scattering Principle & Static Scattering

Norman J. WAGNER NSF NSE Workshop October 28th, 2021

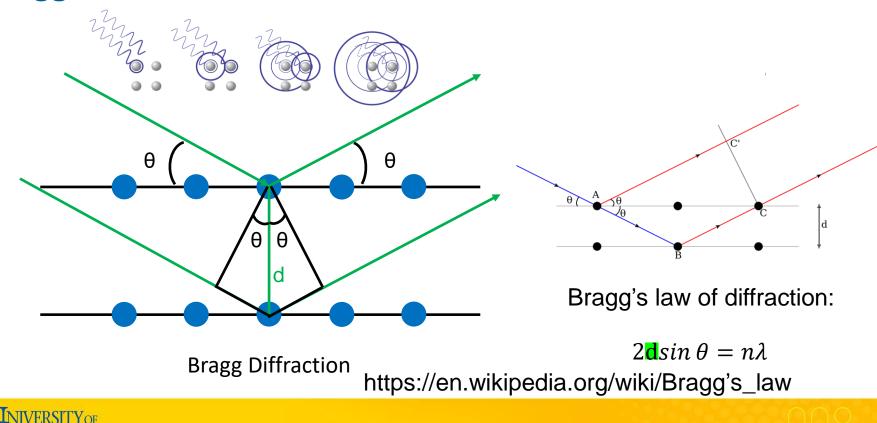
Acknowledgement to Dr. Yun Liu, NCNR NIST

THURSDAY, OCTOBE	R 28 th , 2021					
08:30 AM – 09:00 AM	MEET & GREET- Conference Roo	MEET & GREET– Conference Room (Salon E & F)				
09:00 AM – 09:10 AM	OPENING REMARKS – Robert Di	meo, NCNR Director				
09:10 AM – 10:40 AM	1 st LECTURE – Static Scattering – Norman Wagner					
10:40 AM – 11:00 AM	TEA BREAK					
11:00 AM – 12:30 PM	2 nd LECTURE – Dynamic Scattering – Antonio Faraone					
12:30 PM – 01:30 PM	LUNCH BREAK					
01:30 PM – 03:00 PM	3 rd LECTURE – NSE– Michihiro Nagao					
03:00 PM – 03:20 PM	TEA BREAK					
03:20 PM – 05:30 PM	INTEREST GROUPS					
	PolymerProteinMembraneAntonio FaraoneMichihiro NagaoElizabeth Kelley					
06:15 PM – 07:45 PM	BANQUET – Group Picture					
07:45 PM – 08:25 PM	AFTER DINNER TALK – Edward Lyman					

FRIDAY, OCTOBER 29 th , 2021				
08:15 AM – 08:30 AM	MEET & GREET– Conference Room (Salon E & F)			
08:30 AM – 09:10 AM	COMPLEMENTARY METHODS – Madhusudan Tyagi			
09:10 AM – 09:50 AM	PROPOSAL WRITING – Paul Butler			
09:50 AM – 10:10 AM	TEA BREAK			
10:10 AM – 11:25 AM	PRESENTATION SOUNDBITES			
11:25 AM – 11:30 PM	CLOSING REMARKS – Dan Neumann, CHRNS Director			
11:30 AM – 12:15 PM	LUNCH			
12:20 PM – 01:00 PM	TRAVEL to NIST			
01:30 PM – 03:00 PM	NCNR GUIDE HALL TOUR			
03:30 PM – 04:30 PM	RETURN to HOTEL			

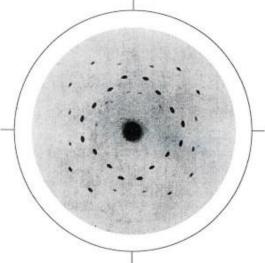
Learning Goal

- ✓ Learn basic concepts of scattering.
- ✓ Understand the relationship between reciprocal space and real space.
- Learn the properties of neutrons and understand why neutrons are a good probe to be used to study soft matter.
- ✓ Understand the principle of small-angle neutron scattering.

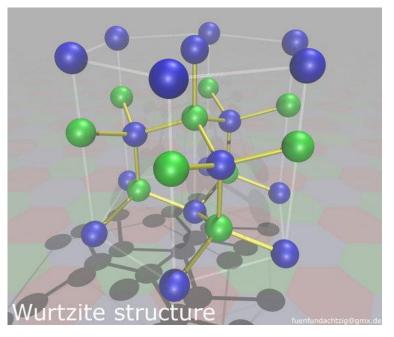


Outline

- Scattering Event
- Properties of Neutron
- Coherent and Incoherent Scattering
- Scattering Form Factors
- Principle of Small-angle Neutron Scattering

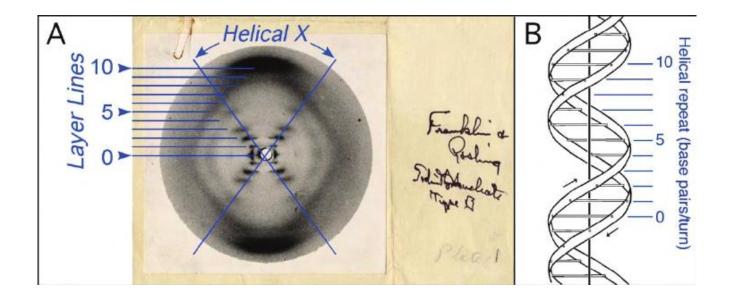


Bragg Diffraction 1913, Nobel Prize 1915

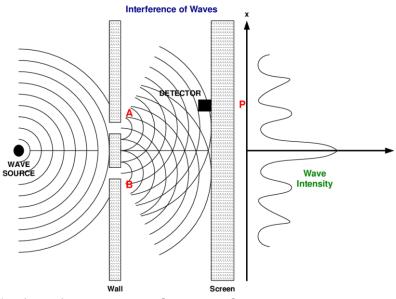


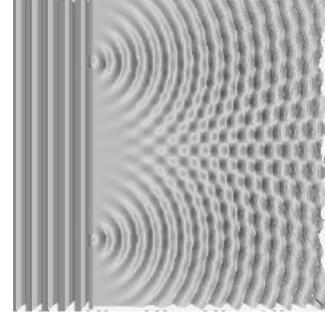
© Center for Neutron Science

Max von Laue 1912

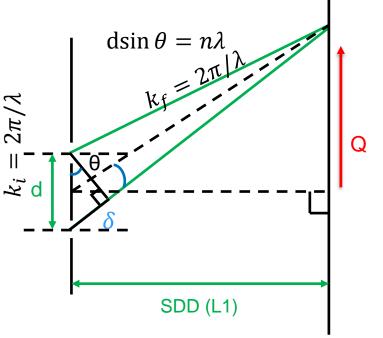

Friedrich, W., Knipping, P. & Laue, M. In *Sitzungsberichte der Math. Phys. Klasse (Kgl.) Bayerische Akademie der Wissenschaften* 303–322 (1912).

HCP structure of wurtzite. (Creator: Alexander Mann Date: 01/14/2006 Licensed under the Creative Commons <u>Attribution-Share</u> <u>Alike 2.0 Germany</u> license




Rosalind Franklin & Raymond Gosling, 1952

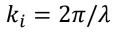
Wave properties of the Neutron: Young's experiment 1801

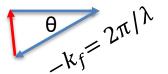


Elhoushi, Mostafa. (2011). Modeling a Quantum Computer.

https://gifimage.net/wp-content/uploads/2017/10/double-slit-experiment-gif-6.gif

Young's Double Slit Experiment (1801)



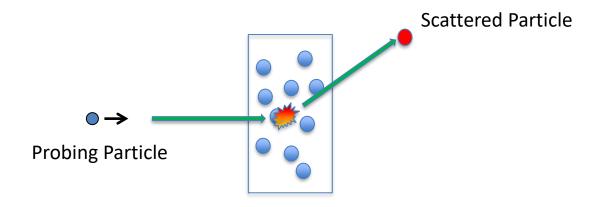

Double Slit Experiment

Intensity of scattering is:

 $|(\mathbf{Q})=\psi(\mathbf{Q})\psi(\mathbf{Q})^*=|\psi(\mathbf{Q})|^2$

Vector Diagram defining Q: $Q = \frac{4\pi}{\lambda} \sin \theta/2$

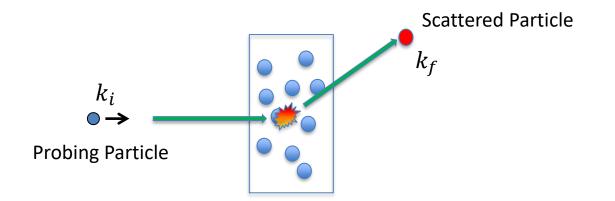
Extra distance traveled by second wave


 $\delta = d * sin\theta$

Phase difference at detector:

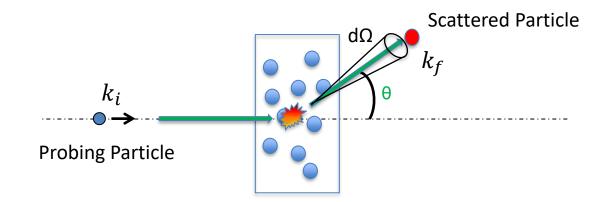
 $\delta = d * sin\theta = m * \lambda;$ $m = 0, \pm 1, \pm 2, \pm 3, ...$

 $|(\mathbf{Q})=\psi(\mathbf{Q}) \psi(\mathbf{Q})^* = |\psi(\mathbf{Q})|^2 = |\psi_0|^2 (1 + \cos(\mathbf{Q}d))$


© Center for Neutron Science

Probing Particles:

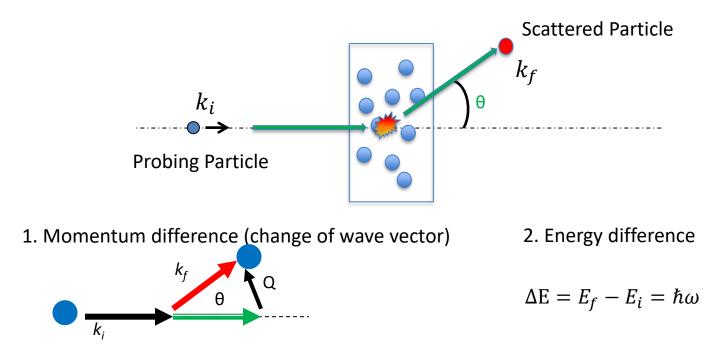
low energy photon (light scattering such as SLS, DLS) high energy photon (X-ray scattering) neutron (neutron scattering)



Properties Probing Particles: energy E_i , and momentum $\overline{p_i} = \hbar \vec{k_i}$, where k_i is the wave vector of particles. And $k_i = \frac{2\pi}{\lambda_i}$. (λ is the wavelength of the particle.)

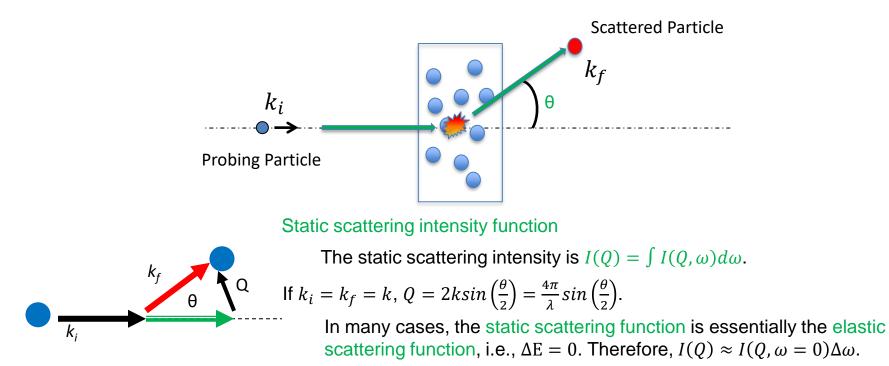
Properties Scattered Particles: energy E_f , and momentum $\overrightarrow{p_f} = \hbar \overrightarrow{k_f}$. And $k_f = \frac{2\pi}{\lambda_f}$.

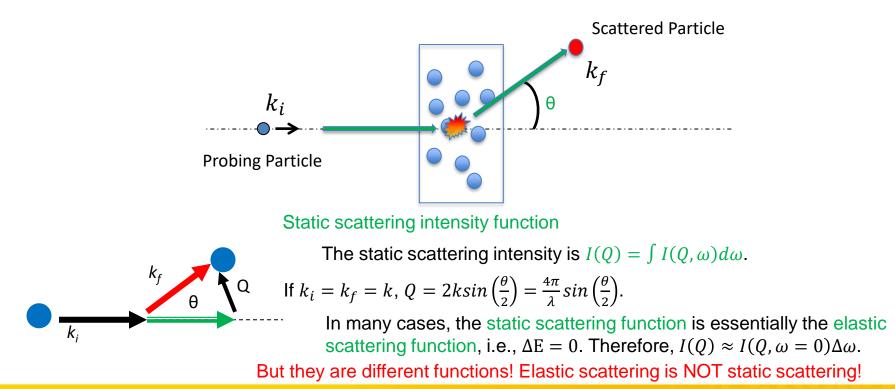
© Center for Neutron Science



What we measure is the number of scattered particles at certain angles (θ) with a certain energy, (E_f).

In other words, it is essentially to measure the probability that a particle is scattered at a solid angle with a certain energy (E_f) .


This probability is called the scattering intensity function, $I(\theta, E_i, E_f)$ which is proportional to the Differential Scattering Cross Section (d σ /d Ω).

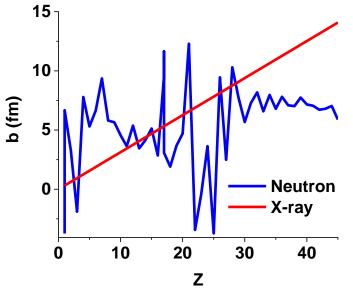


The scattering intensity, $I(\theta, E_i, E_f)$, can be rewritten as $I(Q, \Delta E)$, or $I(Q, \omega)$.

© Center for Neutron Science

Properties of Probes

	X-ray	Neutron	Light
Weight	No	Yes	No
Wavelength (λ)	0.1 – 10 Å	0.1 - 10 Å	4000 - 7000 Å
Interaction	With Electrons	With Nucleus & Magnetic Moment	Polarizability Tensor
Charge	N/A	N/A	N/A
Spin	No	Yes	No
Magnetic Moment	No	Yes	No



Nuclear Interaction

Neutrons are scattered by the nuclei.

Fermi pseudo-potential:

$$V(\underline{r}) = \frac{2\pi\hbar^2}{m_n} b_i \delta(\underline{r} - \underline{r}_i)$$

b_i is the scattering length

Scattering power varies "non-systemically" from *isotope* to *isotope*.

The scattering also depends on nuclear spin state of the atom.

Isotopes & nuclear spin: the example of hydrogen

Proton with nuclear spin of $\frac{1}{2}$ versus , isotope deuterium with nuclear spin of 1

Hydrogen: $b^+ = 1.085 \times 10^{-14} m$ $b^{-} = -4.750 \times 10^{-14} m$ $\langle b \rangle = \frac{3}{4}b^{+} + \frac{1}{4}b^{-} = -0.374x10^{-14}m$ $\langle b^2 \rangle = \frac{3}{4} (b^+)^2 + \frac{1}{4} (b^-)^2 =$ $6.524 \times 10^{-14} m$ $\Delta b = \sqrt{\langle b^2 \rangle - \langle b \rangle^2} = 2.527 \times 10^{-14} m$

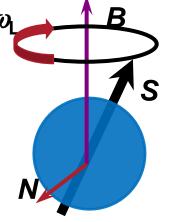
Deuterium:

 $b^+ = 0.953x10^{-14} m$ $b^- = 0.098x10^{-14} m$

$$\langle b \rangle = \frac{2}{3}b^+ + \frac{1}{3}b^- = 0.668x10^{-14}m$$

$$\Delta b = \sqrt{\langle b^2 \rangle - \langle b \rangle^2} = 0.403 x 10^{-14} m$$

Nuclear Spin

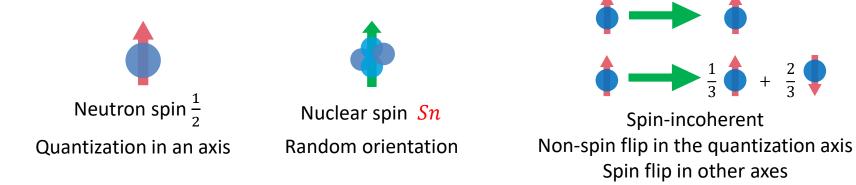

Neutron Properties

- ✓ Mass, $m_{\rm n}$ = 1.675×10⁻²⁷ kg
- ✓ Spin, S = 1/2 [in units of $h/(2\pi)$]
- ✓ Gyromagnetic ratio $\gamma = g_n \mu_n / [h/(2\pi)] =$ 1.832×10⁸ s⁻¹T⁻¹ (29.164 MHz T⁻¹)

In a Magnetic Field

- ✓ The neutron experiences a torque from a magnetic field *B* perpendicular to its spin direction. $N = S \times B$
- ✓ Precession with the Larmor frequency: $\omega_L = \gamma B$

© Center for Neutron Science



S

Spin-flip/Non-spin-flip Scattering

Sample scattering events sometimes involve with spin-flip scattering

- Coherent scattering: Non-Spin-Flip Scattering
- Isotope incoherent scattering: Non-Spin-Flip Scattering
- Spin incoherent scattering: Spin-Flip Scattering -- 2/3 Spin-Flip probability

Spin-flip/Non-spin-flip Scattering

Sample scattering events sometimes involve with spin-flip scattering

- Coherent scattering: Non-Spin-Flip Scattering
- Isotope incoherent scattering: Non-Spin-Flip Scattering

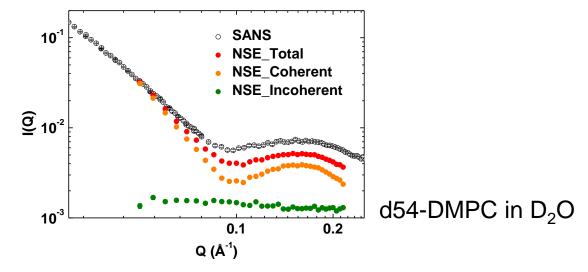
Spin incoherent scattering: Spin-Flip Scattering -- 2/3 Spin-Flip probability

$$I_{NSF} = I_{coh} + I_{i-inc} + \frac{1}{3}I_{s-inc}$$

$$I_{SF} = \frac{2}{3}I_{s-inc}$$

$$I_{total} = I_{coh} + I_{i-inc} + I_{s-inc} = I_{NSF} + I_{SF}$$

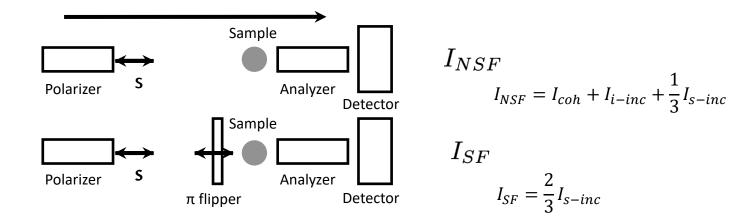
Separation of coherent + isotope-incoherent from spin-incoherent scattering


$$I_{coh} + I_{i-inc} = I_{NSF} - \frac{1}{2}I_{SF}$$
 $I_{s-inc} = \frac{3}{2}I_{SF}$

NSF NSE Workshop Oct, 2021

 $\overline{3}$ $\overline{3}$ $\overline{3}$

Separation of Coherent/Incoherent Scattering



Separation of coherent + isotope-incoherent from spin-incoherent scattering

$$I_{coh} + I_{i-inc} = I_{NSF} - \frac{1}{2}I_{SF}$$
 $I_{s-inc} = \frac{3}{2}I_{SF}$

How do We Measure NSF and SF in Practice

Differential Scattering Cross Section

In a neutron scattering text book, you will find

$$\frac{d\sigma}{d\Omega} = \frac{k_f}{k_i} \frac{1}{2\pi\hbar} \sum_{n,m} b_n b_m \langle \exp\left[-i\vec{Q} \cdot (\vec{r}_m - \vec{r}_n)\right] \rangle$$

Here we consider average scattering lengths $\sum_{n,m} b_n b_m = \sum_{n,m} \left[\overline{b_n b_m} + \left(b_n b_m - \overline{b_n b_m} \right) \right]$

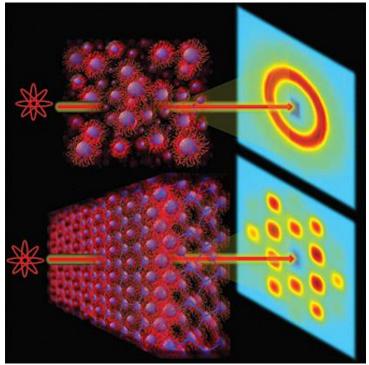
As the sample contains a large number of independent, distinct subsamples, we take an ensemble

$$\overline{b_n} = \langle b_n \rangle = \langle b \rangle$$

$$\overline{b_n b_m} = \langle b \rangle^2$$
For $n \neq m$, $\langle b_n b_m - \overline{b_n b_m} \rangle = \langle b_n \rangle \langle b_m \rangle - \overline{b_n b_m} = 0$
For $n = m$, $\langle b_n b_n - \overline{b_n b_n} \rangle = \langle b_n b_n \rangle - \langle b_n \rangle \langle b_n \rangle = \langle b^2 \rangle - \langle b \rangle^2$

$$\frac{d\sigma}{d\Omega} = \frac{k_f}{k_i} \frac{1}{2\pi\hbar} \times \left[\langle b \rangle^2 \sum_{n,m} \langle \exp[-i\vec{Q} \cdot (\vec{r}_m - \vec{r}_n)] \rangle + (\langle b^2 \rangle - \langle b \rangle^2) \sum_n \langle \exp[-i\vec{Q} \cdot (\vec{r}_n - \vec{r}_n)] \rangle \right]$$
Coherent scattering
$$I_{coh}(\vec{q}, t)$$
Incoherent scattering
$$I_{inc}(\vec{q}, t)$$

Coherent/Incoherent Summary


Scattering and Correlation Functions

$$S(Q) = FT\{\langle -i\vec{Q} \cdot (\vec{r}_m - \vec{r}_n) \rangle\} = FT_S\{g(r)\}$$

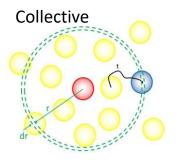
Fourier Transform of the Space Correlation Function

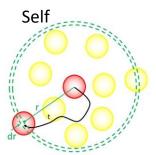
Remember Bragg's law

$$q = \frac{2\pi}{r}$$

Adapted from: Lopez-Barron, C.R., L. Porcar, A.P.R. Eberle, and N.J. Wagner, "Dynamics of Melting and Recrystallization in a Polymeric Micellar Crystal Subjected to Large Amplitude Oscillatory Shear Flow," Physical Review Letters **108**, 258301 (2012).

Scattering Functions


 $S_N(Q) = S_{inc}(Q) + S_{coh}(Q)$


 $S_{coh}(Q)$ is the time Fourier transform of the **PAIR** correlation function

$$S_{coh}(Q) = \frac{1}{N} FT \left\{ \sum_{i,j} \langle b_i \rangle \langle b_j \rangle \langle \exp[-i\vec{Q} \cdot (\vec{r}_m - \vec{r}_n)] \rangle \right\}$$

Sinc(Q) is the space Fourier transform of the SELF correlation function

$$S_{inc}(Q) = \frac{1}{N} FT \left\{ \sum_{i} \left[\langle b_i^2 \rangle - \langle b_i \rangle^2 \right] \langle \exp[-i\vec{Q} \cdot (\vec{r}_m - \vec{r}_n)] \rangle \right\}$$

Scattering Functions

 $S_N(Q) = S_{inc}(Q) + S_{coh}(Q)$

S_{coh}(Q) is the time Fourier transform of the PAIR correlation function

$$S_{coh}(Q) = \frac{1}{N} FT \left\{ \sum_{i,j} \langle b_i \rangle \langle b_j \rangle \langle \exp[-i\vec{Q} \cdot (\vec{r}_m - \vec{r}_n)] \rangle \right\}$$

Coherent Scattering Cross Section $\sigma_i^{coh} = 4\pi \langle b_i \rangle^2$

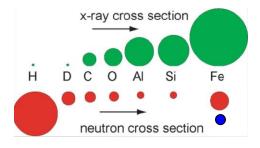
Sinc(Q) is the space Fourier transform of the SELF correlation function

 $S_{inc}(Q) = \frac{1}{N} FT \left\{ \sum_{i} \left[\langle b_i^2 \rangle - \langle b_i \rangle^2 \right] \left\langle \exp\left[-i\vec{Q} \cdot (\vec{r}_m - \vec{r}_n) \right] \right\rangle \right\}$

Incoherent Scattering Cross Section

$$\sigma_i^{incoh} = 4\pi \left[\left< b_i^2 \right> - \left< b_i \right>^2 \right]$$

Scattering Functions


 $S_N(Q) = S_{inc}(Q) + S_{coh}(Q)$

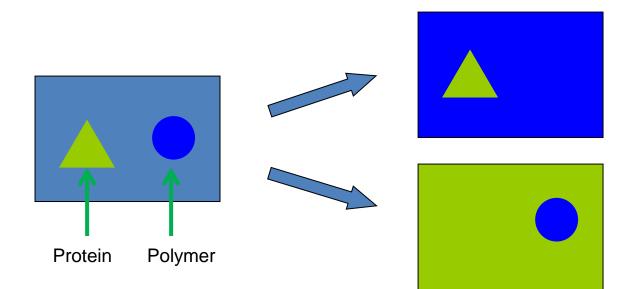
S_{coh}(Q) is the time Fourier transform of the *PAIR* correlation function

$$S_{coh}(Q) = \frac{1}{N} FT \left\{ \sum_{i,j} \langle b_i \rangle \langle b_j \rangle \langle \exp[-i\vec{Q} \cdot (\vec{r}_m - \vec{r}_n)] \rangle \right\}$$

Sinc(Q) is the space Fourier transform of the SELF correlation function

$$S_{inc}(Q) = \frac{1}{N} FT \left\{ \sum_{i} \left[\langle b_i^2 \rangle - \langle b_i \rangle^2 \right] \langle \exp[-i\vec{Q} \cdot (\vec{r}_m - \vec{r}_n)] \rangle \right\}$$

Hydrogen has a high scattering cross section

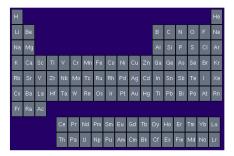


Scattering Length Density

© Center for Neutron Science

When Length scales are large the details of atomic properties cannot be appreciated, a continuous medium approach is more appropriate.

Scattering Contrast



Webtools

NIST Cente	r for Neutron Research			NUST National Institute of
Home	Live Data	Instruments	CHRNS	Standards and Technology Proposals

Neutron scattering lengths and cross sections

NOTE: The above are only thermal neutron cross sections. I do not have any energy dependent cross sections. For energy dependent cross sections please go to the National Nuclear Data Center at Brookhaven National Lab.

Select the element, and you will get a list of scattering lengths and cross sections. All of this data was taken from the Special Feature section of neutron scattering lengths and cross sections of the elements and their isotopes in *Neutron News*, Vol. 3, No. 3, 1992, pp. 29-37.

The scattering lengths and cross sections only go through element number 96 Cm (Curium)

A long table with the complete list of elements and isotopes is also available.

https://www.ncnr.nist.gov/resources/n-lengths/

Back to the top-level Center for Neutron Research page.

These data were entered by hand from the above cited paper. As such some errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may exist. Report errors or make inquiries to Alan Munter, errors may errors may exist. Report errors or make inquiries to Alan Munter, errors may errors may errors may errors may errors may errors or make inquiries to Alan Munter, wow errors may errors may

Webtools

All of this data was taken from the Special Feature section of neutron scattering lengths and cross sections of the elements and their isotopes in Neutron News, Vol. 3, No. 3, 1992, pp. 29-37.

The contents of the columns are as follows:

Column	Unit	Quantity				
1		Isotope				
2		Natural abundance (For radioisotopes the half-life is given instead)				
3	fm	bound coherent scattering length				
4	fm	bound incoherent scattering length				
5	barn	bound coherent scattering cross section				
6	barn	bound incoherent scattering cross section				
7	barn	total bound scattering cross section				
8	barn	absorption cross section for 2200 m/s neutrons				

Note: 1fm=1E-15 m, 1barn=1E-24 cm^2, scattering lengths and cross sections in parenthesis are uncertainties.

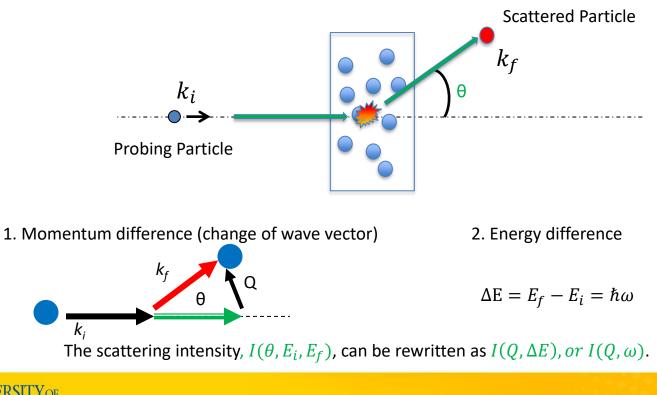
Neutron scattering lengths and cross sections							
Isotope	sotope conc		oh b Inc b Coh xs		Inc xs	Scatt xs	Abs xs
H		-3.7390		1.7568	80.26	82.02	0.3326
1H	99.985	-3.7406	25.274	1.7583	80.27	82.03	0.3326
2H	0.015	6.671	4.04	5.592	2.05	7.64	0.000519
3H	(12.32 a)	4.792	-1.04	2.89	0.14	3.03	0

Back up to the periodic table.

Last Modified 23, November 1999

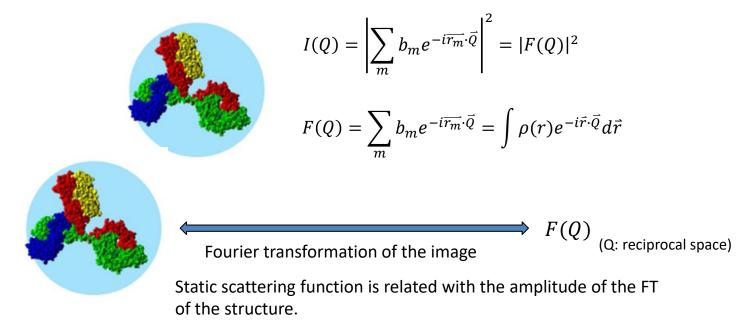
These data were entered by hand from the above cited paper. As such some errors may exist. Report errors or make inquiries to Alan Munter, <u>*calan.munter@nist.gov>*</u>

	Center for Neut	ron Research			Nist National Institute of Standards and Technology
Home		Live Data	Instruments	CHRNS	Proposals
Co			Neutron activation and scattering calculator This calculator uses neutron cross sections to compute activ	ntion on the sample sizes the mass is	the completend the time in the basis as to
	For rab	bit system Calculate	perform scattering calculations for the neutrons which are n		i the sample and the time in the beam, or to
Thermal flux	Cd ratio	Thermal/fast ratio	1. Enter the sample formula in the material panel.		
1e8 Mass	Exposure	Decay	2. To perform activation calculations, fill in the thermal flux neutron activation panel.	x, the mass, the time on and off the be	am, then press the calculate button in the
	10	1 y	3. To perform scattering calculations, fill in the wavelength formula), then press the calculate button in the absorption a		ness and the density (if not given in the
— Absorption and	Scattering		iorniaia), men press die ealeurate oution in die absorption a	na seutering parer.	
Density	Thickness	Calculate			
Source neutrons	Source X-ray	s			
1 Ang	Cu Ka		Chemical formula		

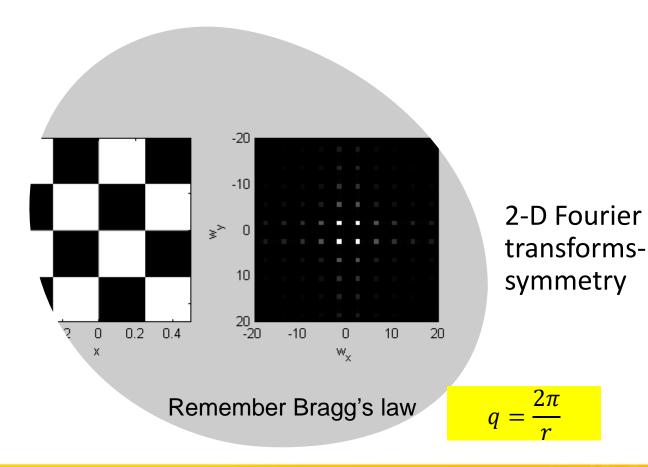

Questions?

Neutron activation: NCNR Health Physics <<u>hp@nist.gov</u>> Scattering calculations: Paul Kienzle <<u>paul.kienzle@nist.gov</u>> Last modified 05-November-2020 by website owner: NCNR (attn: Paul Kienzle)

https://www.ncnr.nist.gov/resources/activation/

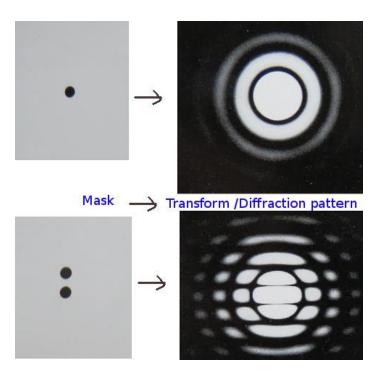


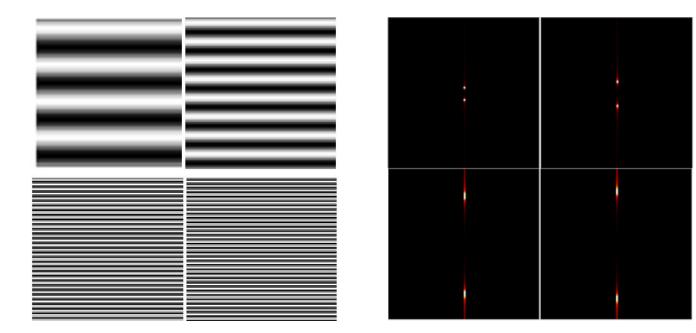
Small-angle Scattering



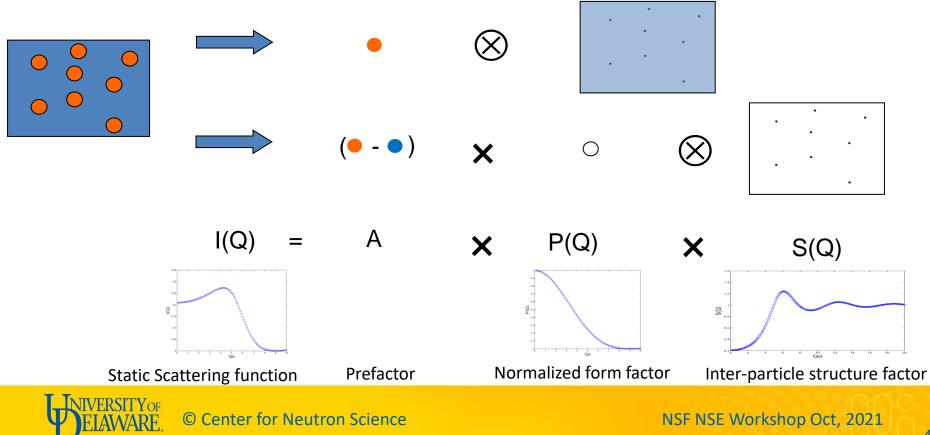
© Center for Neutron Science

What is the relation between I(Q) and the structure of investigated material?

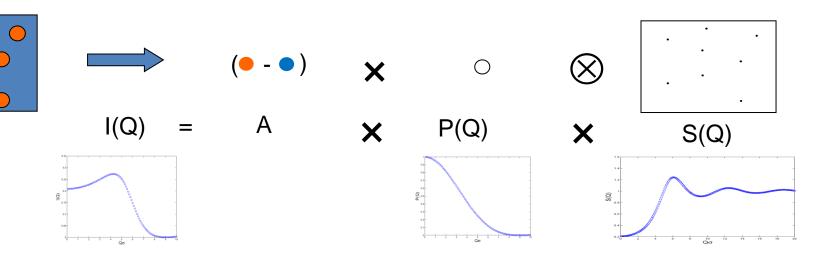



ELAWARE, © Center for Neutron Science

FFT of an aperature



Mental gymnastics



© Center for Neutron Science

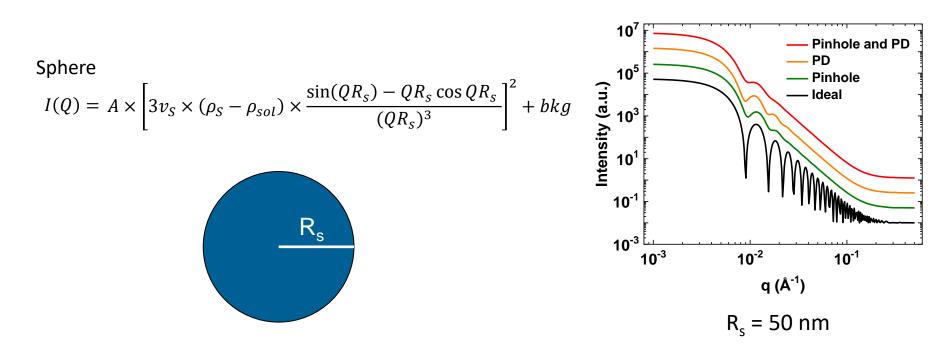
Dilute sample: $S(Q) \approx 1$. Low Q (Q ≈ 0 for SLS): $P(Q \approx 0)=1$.

Case 1: small Q (Q \approx 0) and dilute sample, I(Q \approx 0) = A.

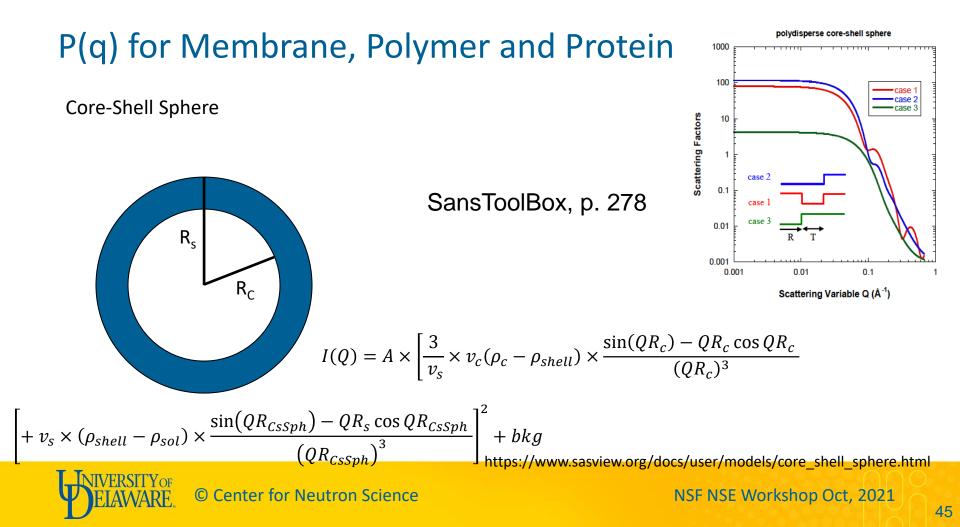
Case 2: dilute sample, I(Q) = A P(Q).

Case 3: small Q (Q \approx 0) and concentrated sample, I(Q \approx 0)=A S(Q \approx 0).

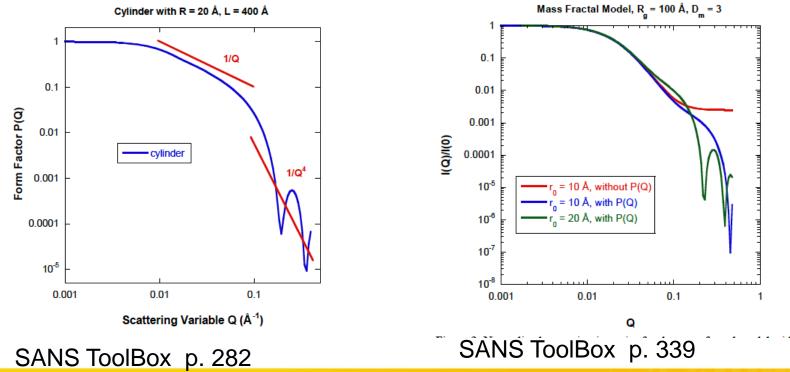
Case 4: concentrated sample, I(Q)=A P(Q) S(Q).



P(q) for Membrane, Polymer and Protein

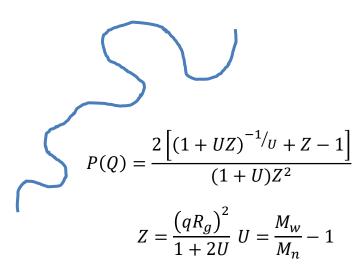


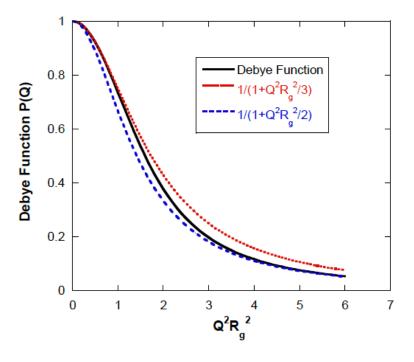
P(q) for Membrane, Polymer and Protein


https://www.sasview.org/docs/user/models/sphere.html

Cylinder

Fractal

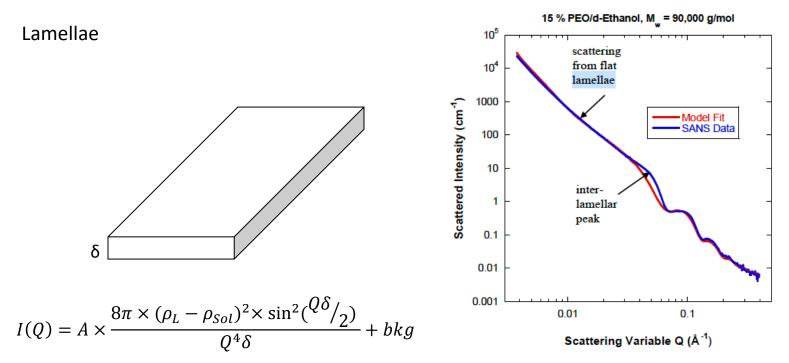



© Center for Neutron Science

P(q) for Membrane, Polymer and Protein

Gaussian coil

 $I(Q) = A \times \phi_{poly} \times v_{poly} \times \left(\rho_{poly} - \rho_{sol}\right) \times P(Q) + bkg$



https://www.sasview.org/docs/user/models/poly_gauss_coil.html

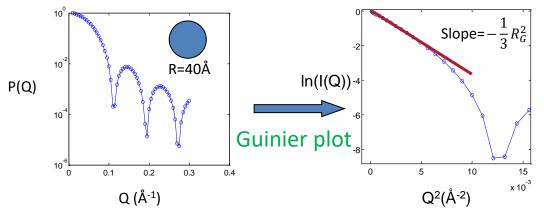
P(q) for Membrane, Polymer and Protein

https://www.sasview.org/docs/user/models/lamellar.html

© Center for Neutron Science

Guinier Plot

Radius of gyration R_G : a measure of size of an object


$$R_G^2 = \sum_i b_i (r_i - \bar{r})^2$$

(Weighted by the scattering length)

When $QR_G \ll 1$, where R_G is the largest length scale in a measured object,

$$P(Q) = \exp(-\frac{1}{3}R_G^2Q^2)$$
 or $\ln(P(Q) = 1 - \frac{1}{3}R_G^2Q^2)$

The equation is independent of shape, size and contrast.

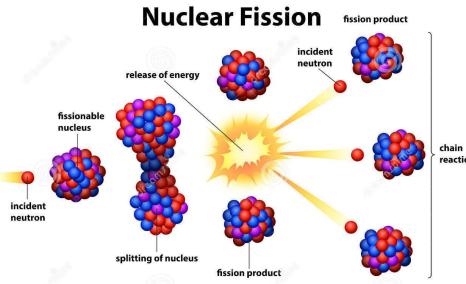
Interparticle Structure Factor S(q)

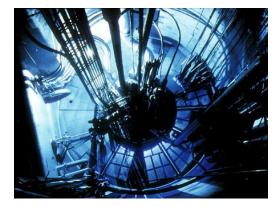
 $I(Q) = A \times P(Q) \times S(Q)$ S(Q): Inter-particle structure factor

$$S(Q) = \frac{1}{N} \sum_{j,k} e^{-i\vec{Q}\cdot\vec{r}_j} e^{i\vec{Q}\cdot\vec{r}_k}$$
$$= 1 + \frac{1}{N} \sum_{j \neq k} e^{-i\vec{Q}\cdot\vec{r}_j} e^{i\vec{Q}\cdot\vec{r}_k}$$
$$= 1 + n \int (g(r) - 1) e^{i\vec{Q}\cdot\vec{r}} d\vec{r}^3$$

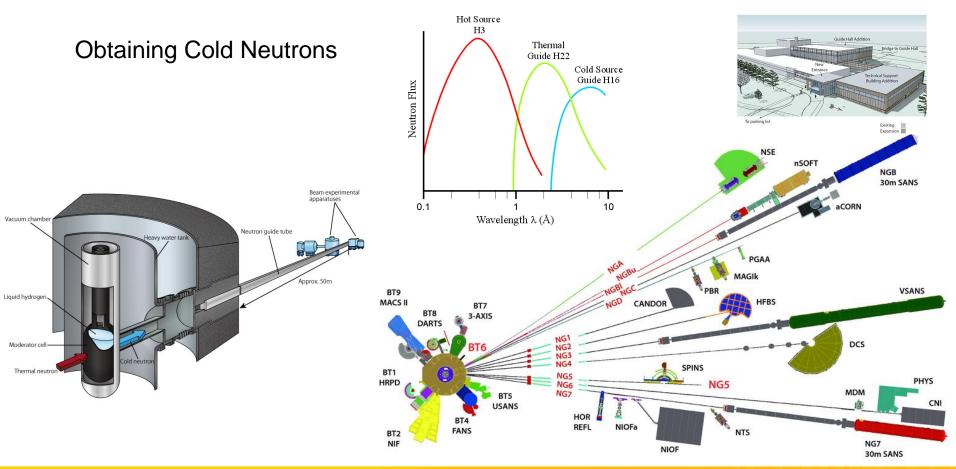
n: number density *g(r)*: pair distribution function

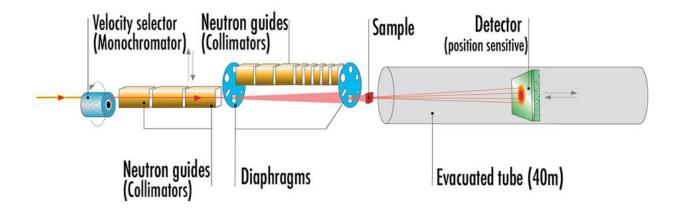
S.-H. Chen Ann. Rev. Phy. Chem. 1986, 37, 351




Interparticle Structure Factor S(q)

 $I(Q) = A \times P(Q) \times S(Q)$ S(Q): Inter-particle structure factor $S(Q) = 1 + n \int (g(r) - 1) e^{i \vec{Q} \cdot \vec{r}} d\vec{r}^{3}$ *n*: number density q(r): pair distribution function (• - •) \bigcirc X Α I(Q)P(Q)X S(Q)Х S(Q) 4 5


How do we obtain neutrons?


reaction

SANS Instrumentation

In class example problem:

Neutrons are produced in a nuclear reactor with an energy of many ev. They are then passed through a cold source (such as liquid hydrogen or deuterium) and thermalized at 20 K for use in neutron diffraction experiments. These are called "Cold Neutrons":

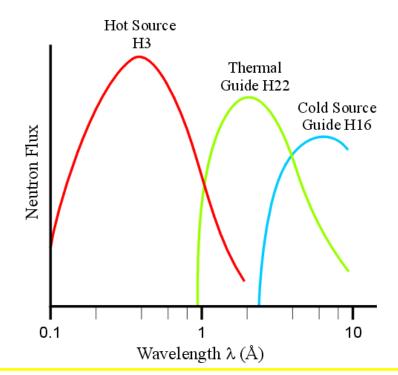
Questions:

- What is the distribution of velocities for these thermal neutrons.
- What is the most probably velocity
- What is the average velocity
- What is the standard deviation of the velocity?
- What is the corresponding wavelength and energy (in *ev*) of the most probable velocity?
- Thought question, why do we use thermal neutrons and not those produced in the reactor?

Data:

1 ev = 1.6×10^{-19} J Mass neutron: 1.674927×10^{-27} kg Speed of light in vacuum: 2.997925×10^{8} m/s $K = 1.38 \times 10^{-23}$ J/K $h = 6.26069 \times 10^{-34}$ Js

$$E = \frac{1}{2}mv^2 = \frac{h^2}{2m\lambda^2}$$



Solution:

Cold neutrons are thermalized at 20K with the Maxwell-Boltzmann distribution:

 $p(v) = 4\pi (m/2\pi kT)^{3/2} e^{-mv^2/2kT}$ $v_{max} = \sqrt{\frac{2kT}{m}} = 574\frac{m}{s}$ $\langle v \rangle^2 = \frac{8kT}{\pi m}, v = 648\frac{m}{r}$ $\langle v^2 \rangle = \frac{3kT}{m}, \sqrt{\langle v^2 \rangle} = 703m/s$ $\sqrt{\langle v^2 \rangle - \langle v \rangle^2} = 273$

Energy: 3.5e-22J, 2.2mev, λ =6.1Å

We use these cold neutrons for diffraction as their wavelength is comparable to atomic spacings and their energies are low enough that they do not damage materials.