3rd Lecture NSE

Michihiro Nagao NSF NSE Workshop October 28th, 2021

Learning Goal

- ✓ Understand the length/time range covered by NSE.
- ✓ Understand the principle of NSE operation.
- Understand the types of soft matter problems that can be solved by NSE.
- ✓ Understand the new opportunities for the upgraded NSE at NIST.
- ✓ Understand how to plan a successful NSE experiment.

Outline

- Dynamic range
- Conventional QENS machine
- Principle of NSE
 - Neutron polarization
 - Larmor precession of neutron spins in a magnetic field
 - Fouier time
 - Measurement of S(Q,t) and S(Q,0)
- NSE data reduction
- Example science on NSE
- Upgrade of the CHRNS-NSE
- Planning a NSE experiment

Dynamic Range

- NSE is one of QENS techniques
- NSE covers smallest Q (biggest size) and longest t (smallest energies or slowest motions) among them

Triple axis spectrometer Monochromatization by Bragg reflection of crystals

Time of Flight spectrometer

Monochromatization by choppers

Energy resolution 10 - 100 μ eV

Time of flight instrument (DCS@NCNR)

Energy resolution 10 - 100 μ eV

To have better energy resolution, i.e., to measure smaller energy exchanged, use smaller incident energy

Energy resolution 10 - 100 μ eV

To have better energy resolution, i.e., to measure smaller energy exchanged, use smaller incident energy narrower energy distribution

Energy resolution 10 - 100 μ eV

© Center for Neutron Science

To have better energy resolution, i.e., to measure smaller energy exchanged, use smaller incident energy narrower energy distribution

10

Neutron wavelength (Å)

15

λ=18Å -> E_n⊭0.25meV

20

ˈλ=5.7Å -≻ E_n≈2.5meV

5

Veutron flux (a.u.)

The better the resolution, the smaller the resolution volume and the lower the count rate

The Idea of NSE

- Traditional define both incident & scattered wavevectors in order to define *E* and *Q* accurately
- Traditional use collimators, monochromators, choppers etc to define both k_i and k_f
- NSE measure as a function of the difference between appropriate components of k_i and k_f (original use: measure k_i-k_f i.e. energy change)
- NSE use the neutron's spin polarization to encode the difference between components of k_i and k_f
- NSE can use poor monochromatization to increase signal intensity, while maintaining very good resolution

Neutron Precession in a magnetic field

Neutron Properties

charge: q = 0mass: $m_n = 1.675 \times 10^{-27}$ kg life time: $t_1 = 886.7s$ spin: S = 1/2 [in unit of $h/(2\pi)$] Magnetic moment: $\mu_n = -9.66 \times 10^{-27}$ J/T

Neutron Precession in a magnetic field

Neutron Properties

charge: q = 0mass: $m_n = 1.675 \times 10^{-27}$ kg life time: $t_1 = 886.7$ s spin: S = 1/2 [in unit of $h/(2\pi)$] Magnetic moment: $\mu_n = -9.66 \times 10^{-27}$ J/T

Neutron Precession in a magnetic field

Neutron Properties

charge: q = 0mass: $m_n = 1.675 \times 10^{-27}$ kg life time: $t_1 = 886.7$ s spin: S = 1/2 [in unit of $h/(2\pi)$] Magnetic moment: $\mu_n = -9.66 \times 10^{-27}$ J/T

The neutron experiences a torque, **N**, from a magnetic field **B** perpendicular to its spin direction

$$\frac{dS}{dt} = N = S \times B$$

Precession with Larmor frequency

$$\omega_L = \gamma B$$

Gyromagnetic ratio: $\gamma = 1.832 \times 10^8 / s / T$

Larmor precession

At NCNR, 0.0001 < J < 0.5 T m, how many turns do you expect when λ =8Å

de Broglie relation:
$$\lambda = \frac{h}{mv}$$

$$\sim 6 < N(\lambda) = \frac{\varphi}{2\pi} = \frac{\gamma m \lambda}{2\pi h} J = 7370 \times J [T \cdot m] \times \lambda [Å]$$

 $U_{\text{ELAWARE}} \times 10^4$ © Center for Neutron Science

A combination of magnetic fields

$$\varphi = \gamma \frac{\int Bdl}{v} = \gamma \frac{J}{v}$$
$$\Delta \varphi = \gamma \left(\frac{J}{v} - \frac{J}{v}\right) = 0$$

VERSITY OF ELAWARE © Center for Neutron Science

Scattering event: neutron beam

• elastic scattering

$$\overline{\varphi} = \left(\gamma \left(\frac{J}{v} - \frac{J}{v} \right) \right)_{f(\lambda)} = 0$$
INVERSITY OF ELAWARE.

 $P_x \approx 1$

Scattering event: neutron beam

• quasielastic scattering

$$\bar{\varphi} = \left\langle \gamma \frac{J}{v} - \gamma \frac{J}{v + \delta v} \right\rangle_{f(\lambda)} \neq 0$$

NSF NSE Workshop Oct, 2021

 $P_{\chi} \neq 1$

Relation of
$$\langle \varphi \rangle = \omega t = \frac{\Delta E}{\hbar} t$$

 $\langle \varphi \rangle = \langle -\frac{\gamma J}{v} + \frac{\gamma (J + \delta J)}{v + \delta v} \rangle = \frac{\gamma m}{h} \langle -\lambda J + (\lambda + \delta \lambda)(J + \delta J) \rangle \approx \frac{\gamma m}{h} (J \delta \lambda + \lambda \delta J)$

On the other hand, we know energy exchange can be written

$$\Delta E = \hbar \omega = \frac{h^2}{2m} \left[\frac{1}{\lambda^2} - \frac{1}{(\lambda + \delta \lambda)^2} \right] \approx \frac{h^2}{m} \frac{\delta \lambda}{\lambda^3} \longrightarrow \delta \lambda = \frac{m\lambda^3}{2\pi h} \omega = \frac{m\lambda^3}{h^2} \Delta E$$
Then,
$$\langle \varphi \rangle \approx \left[\frac{\gamma m^2 J \lambda^3}{2\pi h^3} \Delta E + \frac{\gamma m \lambda}{h} \delta J \right]$$
Fourier time
When $\delta J = 0$
(symmetric condition)
$$\langle \varphi \rangle \approx \frac{\gamma m^2 J \lambda^3}{2\pi h^3} \Delta E = \frac{\gamma m^2 J \lambda^3}{2\pi h^2} \omega \longrightarrow t = \frac{\gamma m^2 J \lambda^3}{2\pi h^2} = \frac{m\lambda^2}{h} N(\lambda)$$

 \tilde{E}_{c} © Center for Neutron Science

In reality, wavelength distribution $f(\lambda)$

$$I_{NSE} \propto \int \int_{-\infty}^{\infty} f(\lambda) S(Q, \frac{\Delta E}{\hbar}) \frac{1 + \cos(\varphi)}{2} d\frac{\Delta E}{\hbar} d\lambda = \frac{1}{2\hbar} \left[\int \int_{-\infty}^{\infty} f(\lambda) S(Q, \frac{\Delta E}{\hbar}) d\Delta E d\lambda + \int \int_{-\infty}^{\infty} f(\lambda) S(Q, \frac{\Delta E}{\hbar}) \cos(\varphi) d\Delta E d\lambda \right]$$

Wavelength resolution smeared $S(Q)$
$$\int d\lambda \int_{-\infty}^{\infty} d\Delta E f(\lambda) S(Q, \frac{\Delta E}{\hbar}) \cos\left[\frac{\gamma m^2 J \lambda^3}{2\pi \hbar^3} \Delta E + \frac{\gamma m \lambda}{\hbar} \delta J \right] = \int d\lambda \int_{-\infty}^{\infty} d\Delta E f(\lambda) S(Q, \frac{\Delta E}{\hbar}) \cos\left(\frac{\gamma m \lambda}{\hbar} \delta J \right)$$
$$= \int f(\lambda) \cos\left(\frac{\gamma m \lambda}{\hbar} \delta J \right) d\lambda \times \int_{-\infty}^{\infty} S(Q, \frac{\Delta E}{\hbar}) \cos\left(\frac{\Delta E}{\hbar} t \right) d\Delta E$$

$$I_{NSE} \propto S(Q) + S(Q,t) \exp\left(-\Lambda^2 \gamma^2 \frac{m^2}{h^2} \delta J^2\right) \cos\left(\gamma \frac{m}{h} \lambda \delta J\right)$$

 $\Lambda:$ relating to the wavelength spread $\Delta\lambda$

Period of oscillation $\propto \lambda$

Decay of oscillation relates to the wavelength distribution

NSE principles - summary

- If a spin rotates anticlockwise & then clockwise by the same amount it comes back to the same orientation
 - Need to reverse the direction of the applied field
 - Independent of neutron speed provided
- The same effect can be obtained by reversing the precession angle at the mid-point and continuing the precession in the same sense
 Use a π rotation (π flipper)
- If the neutron's velocity is changed by the sample, its spin will not come back to the same orientation
 - The difference will be a measure of the change in the neutron's speed or energy.

NSE: coherent vs incoherent

$$\frac{S(Q,t)}{S(Q,0)} = \frac{S_{coh}(Q,t) - \frac{1}{3}S_{inc}(Q,t)}{S_{coh}(Q,0) - \frac{1}{3}S_{inc}(Q,0)}$$

NSE is known for the investigation of the coherent dynamics.

Incoherent scattering intensity is reduced to -1/3 in NSE. The best achievable flipping ratio is 0.5.

Spin-flip/Non-spin-flip Scattering

Sample scattering events sometimes involve with spin-flip scattering

Coherent scattering: Non-Spin-Flip Scattering Isotope incoherent scattering: Non-Spin-Flip Scattering Spin incoherent scattering: Spin-Flip Scattering -- 2/3 Spin-Flip probability $I_{NSF} = I_{coh} + I_{i-inc} + \frac{1}{3}I_{s-inc}$ $I_{cotal} = I_{coh} + I_{i-inc} + I_{s-inc} = I_{NSF} + I_{SF}$ $I_{SF} = \frac{2}{3}I_{s-inc}$

Separation of coherent + isotope-incoherent from spin-incoherent scattering

$$I_{coh} + I_{i-inc} = I_{NSF} - \frac{1}{2}I_{SF}$$
 $I_{s-inc} = \frac{3}{2}I_{SF}$

NSE: coherent vs incoherent

$$\frac{S(Q,t)}{S(Q,0)} = \frac{S_{coh}(Q,t) - \frac{1}{3}S_{inc}(Q,t)}{S_{coh}(Q,0) - \frac{1}{3}S_{inc}(Q,0)}$$

NSE is known for the investigation of the coherent dynamics.

Incoherent scattering intensity is reduced to -1/3 in NSE. The best achievable flipping ratio is 0.5. However, the main limitation to Othe study of incoherent of scattering by NSE is the Q coverage of instrument.

Recent advancements in NSE instrumentation aim to overcome this limitation (WASP at ILL).

Most important is to avoid *Q* areas where coherent and incoherent intensity cancel each other.

Data reduction: intensity vs phase (echo signal) and t

Data reduction: intensity vs phase (echo signal) and t

Polarized intensity vs phase (echo signal)

Fitting the echo
Fitting the echo

$$I_{NSE} \propto S(Q) + S(Q, t) \exp\left(-\Lambda^2 \gamma^2 \frac{m^2}{h^2} \delta J^2\right) \cos\left(\gamma \frac{m}{h} \lambda \delta J^2\right)$$

$$I_{NSE} \propto S(Q) + S(Q, t) \exp\left(-\Lambda^2 \gamma^2 \frac{m^2}{h^2} \delta J^2\right) \cos\left(\gamma \frac{m}{h} \lambda \delta J^2\right)$$

$$I_{0} \text{ Average Intensity}$$

$$I_{0} \text{ Echo point}$$

$$I_{0} \text{ Echo point}$$

$$I_{0} \text{ Echo point}$$

$$I_{0} \text{ Echo width, function}$$

$$I_{0} \text{ Echo width, function of } (\lambda)$$

$$I_{0} \text{ Echo width distribution}$$

$$I_{0} \text{ Echo width distribution}$$

$$I_{0} \text{ Echo width distribution}$$

$$I_{0} \text{ Echo point}$$

$$I_{0} \text$$

The physical information is all in the amplitude

$$\frac{I(Q,t)}{I(Q)} \propto \frac{2A}{Up - Dwn}$$

Incidentally, in this way, both polarization and detector efficiency effects are taken care off.

A small portion of the echo will do

"/var/nse/m3514" 10% DS/D20 1mm Q=0p06 Q=5.984e+08 m-1 t=5.03804e-10 s

Polarized intensity vs t

41

Resolution normalization

Even for an elastic scatterer the echo signal will decrease with the increase of the Fourier time. Inhomogeneities in the • magnetic field will depolarize the beam. In Neutron Spin-Echo the resolution can be simply divided out from the data.

In reality, 2D detector

Each pixel has an echo

at multiple Fourier time points

+ multiple scattering angles

Data reduction software is available Data Analysis and Visualization Environment DAVE @ NCNR

Question: What do the blue lines define?

2D detector: 32 x 32 pixels with 1 cm² resolution

Phase map

Phase (=echo point) varies with detector pixel. Why?

Phase map

Phase (=echo point) varies with detector pixel.

Why?

Neutron trajectories are different. Each neutron trajectory, the magnetic field integral *J* may be different.

Difference in J (δJ) changes the precession angle: potential reason to reduce the instrument resolution

$$\langle \varphi \rangle \approx \left[\frac{\gamma m^2 J \lambda^3}{2\pi h^3} \Delta E + \frac{\gamma m \lambda}{h} \delta J \right]$$

NSF NSE Workshop Oct, 2021

46

Science on NSE

Coherent dynamics

Density fluctuations corresponding to some SANS pattern length (Å)

Diffusion Shape fluctuations (Internal dynamics) Polymer dynamics Liquids and Glass systems

© Center for Neutron Science

Incoherent dynamics

Self-dynamics (hydrogen atoms)

Magnetic dynamics

Spin glasses

Self-diffusion of a particle - diffusion

Here, we assume self-part of the van Hove correlation function that follows Gaussian shape

$$G_{s}(r,t) = \frac{1}{(2\pi)^{\frac{3}{2}}\sigma^{3}(t)}e^{-\frac{r^{2}}{2\sigma^{2}(t)}}$$

Experiment and theory suggest the Gaussian width follows $\sigma(t) = \sqrt{2Dt}$

The second moment of $G_s(r,t)$ corresponds to the mean square displacement (MSD), $\langle r^2 \rangle$

A property of Gaussian functions $\langle e^{iQ[r_i(t)-r_j(0)]} \rangle = e^{-\frac{Q^2}{6} \langle |r_i(t)-r_j(0)|^2 \rangle}$

$$\sigma(t)$$

$$|r^2\rangle = \int_{-\infty}^{\infty} r^2 G_s(r,t) dr = 6Dt$$

$$S(Q,t) = e^{-DQ^2t}$$

Self-diffusion of a particle - diffusion

A particle in interest undergoes many collisions with neighboring particles

Trajectory is a random walk

Probability distribution $G_s(r, t)$ is the solution of the diffusion equation $\frac{\partial G_s(r, t)}{\partial t} = D\nabla^2 G_s(r, t) \qquad D \text{ is the diffusion constant}$ $G_s(r, t) = (4\pi Dt)^{-3/2} e^{-\frac{r^2}{4Dt}}$

Space Fourier Transform

$$S(Q,t) = e^{-DQ^2t}$$

Diffusing colloidal particles

In general...

Decay gets faster as Q increases

- Smaller Q -> larger length scale
 - Larger objects move slower
- Larger Q -> smaller length scale
 - Smaller objects move faster

Diffusion of microemulsion droplets

S.-C. Wang, P. Mirarefi, A. Faraone, and C. Ted Lee, Jr., *Biochemistry* 50, 8150 (2011).

Diffusion and internal dynamics of proteins

Lysozyme solution + azoTAB surfactant

8 0.05

0.1

0.15 Q (Å⁻¹) 0.2

0.25

When beads are connected – polymer dynamics

MSD for a chain segment

54

© Center for Neutron Science

E. Senses, S.M. Ansar, C.L. Kitchen, Y. Mao, S. Narayanan, B. Natarajan, and A. Faraone, Phys. Rev. Lett. 118, 147801 (2017).

55

1000 More neutrons! Cold source upgrade at the 100 NCNR (planned in 2023) Smaller Q to access larger length 10 scales! t (ns) Use longer wavelength neutrons λ=17Å 0.1 λ=14Å Larger t to access longer time λ=11Å scales! λ=8Å 0.01 λ=6Å

λ=4.5Å

Future direction of the NIST-CHRNS-NSE

- Use longer wavelength
 - neutrons and increase magnetic field integral

 \underline{m}^2

 $t = \gamma_{\overline{z}}$

 $Q(Å^{-1})$

⁹0.1

0.001

NCNR cold source upgrade

20 30

3.0

20

10

10

© Center for Neutron Science

Improve magnetic field strength

- Coil shape determines J_{max}
- Neutrons at different trajectories feel different J, which limits ability of NSE spectroscopy

Asymmetric Coil Shape = Optimized for NSE

Design on IN15 at ILL by Bela Farago

Design on J-NSE-Phoenix at JCNS by Michael Monkenbusch

Improve magnetic field inhomogeneity

$$r^2 = x^2 + y^2$$

© Center for Neutron Science

Spiral cut to realize an array of concentric loops with

$$r \propto \sqrt{n}$$

will compensate r² inhomogeneity Mezei, *Lect. Notes Phys.* **128**, 178 (1979).

Version at Juelich

Fresnel coil: technology from the 1970s

Version at ILL

Gains

- Improving data rate a factor 10 to access 100 ns (currently by 11 Å, in future by 8 Å)
 - More gain at longer wavelengths
- Routine operation up to 300 ns
 - Currently 100 ns
- Maximum achievable time to 700 ns
 - Current record 300 ns
- Out reach & education
 - This workshop!

Planning a NSE experiment

- Which dynamics do you want to identify?
 - Prepare a few clear targets why you measure dynamics of which system
- Most probably you would like to know the structure before even thinking to study dynamics
 - Dynamics are measured simultaneously with static structures
 - Intensity distributions including coherent/incoherent
- Guestimate timescale of the motion
 - NMR?, dielectric spectroscopy?, DLS?, NBS?, simulation?...
- Gather enough amount of materials
 - Typical sample size 30 mm x 30 mm x 1 4 mm
- Discuss with an expert

Learning Goal

- Understand the length/time range covered by NSE
 - Nanometer and nanosecond scales
- Understand the principle of NSE operation
 - Larmor precession to decouple instrument and probe energy resolution
- Understand the types of soft matter problems that can be solved by NSE
 - Various coherent soft matter dynamics
- Understand the new opportunities for the upgraded NSE at NIST
 - Extended Fourier time range with increased data rate
- Understand how to plan a successful NSE experiment
 - Better to (almost must) know static structures, before dynamics studies

Presentation 10/29 10:10 am

 Use what you learned from this workshop to present your research that can be benefit from NSE (the one in your application or something else). Send it to Kuo-Chih by 11:59 pm kuo-chih.shih@nist.gov

Proposal Review (Optional)

• If you like, you can submit a proposal through our IMS proposal system (we will tell you how to do this, of course) and reviewers will review your proposal and give you feedback.

Polymer: Main Conference Room

Membrane: Key Room

Protein: Tubman Room

