New NIST Cooperative Agreement

Center for Neutron Science at the University of Delaware: Neutron Metrology for Solving Grand Challenge Problems by Engineering the Tools of Scientific Discovery

This cooperative agreement between the Center for Neutron Science (CNS) at the University of Delaware (UD) and the NCNR for the purpose of advancing neutron scattering metrology for research and by using this neutron science to address the following NAE Grand Challenge Problems: Engineering Better Medicines, Restore and Improve Urban Infrastructure, and Engineering the Tools of Scientific Discovery.

Read full print

UD’S HIGHEST FACULTY HONOR GOES TO NORM WAGNER

Norman Wagner

Engineer, inventor, mentor named 2020 Francis Alison winner

Wagner’s lifelong curiosity and delight in science, research and collaborative problem-solving have fueled an inventive career that has inspired many a colleague and student, drawn international recognition and now is distinguished with the University of Delaware’s highest faculty honor — the 2020 Francis Alison Award. The award, established in 1978, is named for the University’s founder, the Rev. Francis Alison, and recognizes contributions and distinction as both a scholar and an educator.

Read full article

A NEW UNDERSTANDING OF PROTEIN MOVEMENT

A team of engineers has shown that surface diffusion in protein transport into ion-exchange beads depends on adsorption affinity — a measure of attraction between the two materials.

UD engineers uncover role of surface diffusion in protein transport, which could aid biopharmaceutical processing

A team of engineers from the University of Delaware, with a collaborator from pharmaceutical company Amgen, has shown that surface diffusion in protein transport into ion-exchange beads depends on adsorption affinity — a measure of attraction between the two materials. By exploiting this relationship, the team developed a procedure to purify a monoclonal antibody — a type of molecule that mediates immunity — with productivity 43% higher than usual.

Read full article

NEUTRON SPIN ECHO FOR THE NATION

CNS_NSE_Banner

A world-class Neutron Spin Echo Spectrometer for the Nation: UD-NIST -UMD Consortium NSF Proposal 1935956

This award from the Midscale Research Instrumentation -1 program supports the acquisition, implementation and commissioning of a world-class neutron spin echo spectrometer for the nation. The University of Delaware’s Center for Neutron Science working together with the National Institute of Standards and Technology’s Center for Neutron Research and the University of Maryland are creating a world-class neutron spin echo spectrometer to strengthen U.S. research infrastructure with substantial benefit to the soft matter, biological sciences, and engineering research communities. (continue reading…)

Neutron Day 2019: Celebrating the Promise of Neutrons

At Neutron Day, international experts discuss the future of neutron scattering science

October 30 was Neutron Day this year at the University of Delaware. Why celebrate neutrons? Because these subatomic particles with neutral electrical charge can bring positive benefits to the world. Researchers at the University of Delaware are using neutrons to investigate ways to make new, better products, from super strong building materials to lifesaving medicines.

Continue reading…

Register for Neutron Day
View Program

A NEW SCIENTIFIC INSTRUMENT FOR THE NATION

The University of Delaware will lead the development of a world-class neutron spin echo spectrometer, which will be installed at the National Institute of Standards and Technology’s Center for Neutron Research, shown here.

UD tapped to lead development of world-class neutron research instrument

The University of Delaware has been tapped to lead the development of a world-class neutron spin echo spectrometer for the United States. This scientific instrument will advance U.S. research on countless materials important to humanity, from new medicines to more powerful batteries. UD’s Norman Wagner, the Unidel Robert L. Pigford Chair in Chemical and Biomolecular Engineering and director of the Center for Neutron Science, will lead the project, which is funded by an $11.8 million grant from the National Science Foundation. “This groundbreaking research project brings distinction to the entire University of Delaware, and we are excited to see what the future will bring,” said UD President Dennis Assanis. “On behalf of our entire University, I want to offer heartfelt congratulations to Dr. Wagner and his research group on this remarkable accomplishment.” It is among the first awards in NSF’s Mid-Scale Research Infrastructure program, announced Sept. 17.

Read full article

Senator Coons tweets Congrats to UD CNS

Center for Neutron Science team wins $11M grant from NSF

Senator Chris Coons congratulates University of Delaware’s Norm Wagner and Center for Neutron Science Team

Senator Chris Coons: “Congrats to @UDelaware’s Norm Wagner & his Center for Neutron Science team for winning an $11M grant from @NSF. This funding will help American scientists, NIST, UD, UMD & partners close an important gap by supporting both research & the best neutron measurement instrumentation.”

View Senator Chris Coons Tweet

CNS/NIST Seminar – Tuesday, August 20, 2019 @3:00 p.m. in 366 Colburn Lab

Matsarskaia Facebook Ad
Olga Matsarskaia, Institut Laue-Langevin, Grenoble, France “How Multivalent Cations Tune the Phase Behaviour of Proteins: Insights from Scattering Experiments”

Dr. Matsarskaia completed her Ph.D. studies in December 2018 in Frank Schreiber’s group at the University of Tübingen, Germany. Her research focused on the influence that multivalent cations have on the thermodynamics of proteins in solution. Her main methods involved various X-ray and neutron scattering techniques. Currently, she is a post-doctoral fellow in Bela Farago’s neutron spectroscopy group at the Institut Laue-Langevin in Grenoble, France, and focuses on the dynamics of proteins in crowded environments using neutron backscattering and complementary methods. View Abstract

JACS Publication

Understanding Gas Storage in Cuboctahedral Porous Coordination Cages

Bloch Group recently published a paper in JACS where neutron diffraction was used to study methane binding sites in porous materials

Gregory R. Lorzing, Eric J. Gosselin, Benjamin A. Trump, Arthur H. P. York, Arni Sturluson, Casey A. Rowland, Glenn P. A. Yap, Craig M. Brown, Cory M. Simon, Eric D. Bloch*

Porous molecular solids are promising materials for gas storage and gas separation applications. However, given the relative dearth of structural information concerning these materials, additional studies are vital for further understanding their properties and developing design parameters for their optimization. Here, we examine a series of isostructural cuboctahedral, paddlewheel-based coordination cages, M24(tBu-bdc)24 (M = Cr, Mo, Ru; tBu-bdc2– = 5-tert-butylisophthalate), for high-pressure methane storage. As the decrease in crystallinity upon activation of these porous molecular materials precludes diffraction studies, we turn to a related class of pillared coordination cage-based metal–organic frameworks, M24(Me-bdc)24(dabco)6 (M = Fe, Co; Me-bdc2– = 5-methylisophthalate; dabco = 1,4-diazabicyclo[2.2.2]octane) for neutron diffraction studies. The five porous materials display BET surface areas from 1057–1937 m2/g and total methane uptake capacities of up to 143 cm3(STP)/cm3. Both the porous cages and cage-based frameworks display methane adsorption enthalpies of −15 to −22 kJ/mol. Also supported by molecular modeling, neutron diffraction studies indicate that the triangular windows of the cage are favorable methane adsorption sites with CD4–arene interactions between 3.7 and 4.1 Å. At both low and high loadings, two additional methane adsorption sites on the exterior surface of the cage are apparent for a total of 56 adsorption sites per cage. These results show that M24L24 cages are competent gas storage materials and further adsorption sites may be optimized by judicious ligand functionalization to control extracage pore space.

Read JACS article